Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Carboxy-1-phenylethanaminium perchlorate

Xiu-Zhi Li, Hui Li and Zhi-Rong Qu*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: quzr@seu.edu.cn

Received 25 April 2009; accepted 29 April 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.110; data-to-parameter ratio = 16.4.

In the title compound, $C_9H_{12}NO_2^+ \cdot ClO_4^-$, an intramolecular N-H···O interaction results in the formation of a sixmembered ring having a twisted chair conformation. In the crystal structure, intermolecular O-H···O, N-H···O and $C-H \cdots O$ interactions link the molecules into a network. A weak $C-H\cdots\pi$ interaction is also found.

Related literature

There has been an increased interest in the enantiomeric preparation of β -amino acids as precursors for the synthesis of novel biologically active compounds, see: Arki et al. (2004); Cohen et al. (2002); Zeller et al. (1965). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$C_9H_{12}NO_2^+ \cdot ClO_4^-$	V = 2237.0 (8) Å ³
$M_r = 265.65$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 6.6583 (13) Å	$\mu = 0.36 \text{ mm}^{-1}$
b = 13.826 (3) Å	T = 294 K
c = 24.300 (5) Å	$0.45 \times 0.35 \times 0.12 \text{ mm}$

Data collection

Rigaku SCXmini diffractometer	21012 measured reflections
Absorption correction: multi-scan	2560 independent reflections
(Blessing, 1995)	1966 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.863, T_{\max} = 0.957$	$R_{\rm int} = 0.058$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ wR(F²) = 0.110 156 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-1}$ S = 1.10 $\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$ 2560 reflections

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N1-H1B\cdots O2$	0.89	2.13	2.773 (3)	128
C9−H9···O5 ⁱ	0.93	2.56	3.409 (3)	152
$C3-H3\cdots O5^{i}$	0.98	2.57	3.370 (3)	139
C3-H3···O2 ⁱⁱ	0.98	2.58	3.286 (3)	129
$N1 - H1C \cdot \cdot \cdot O3^{iii}$	0.89	2.05	2.892 (3)	158
$N1 - H1B \cdot \cdot \cdot O3^{iv}$	0.89	2.28	3.046 (3)	144
$N1 - H1A \cdots O6^{v}$	0.89	2.13	2.979 (3)	159
$O1-H1\cdots O2^{vi}$	0.82	2.41	3.046 (2)	135
O1−H1···O4 ^{vii}	0.82	2.35	3.048 (3)	143
$C8-H8\cdots Cg1^{viii}$	0.93	2.79	3.688 (3)	162

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z; (ii) $x - \frac{1}{2}$, $y, -z + \frac{1}{2}$; (iii) x - 1, y - 1, z; (iv) $x - \frac{1}{2}, y - 1, -z + \frac{1}{2}; (v) x, y - 1, z; (vi) x + \frac{1}{2}, y, -z + \frac{1}{2}; (vii) -x + 2, y - \frac{1}{2}, -z + \frac{1}{2}; (viii)$ -x - 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$. Cg1 is the centroid of the C4–C9 ring.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by the Technical Fund Financing Projects (grant Nos. 9207042464 and 9207041482) from Southeast University to ZRO.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2675).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Arki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43-54.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Cohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977–1981.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zeller, E. A., Ramachander, G., Fleisher, G. A., Ishimaru, T. & Zeller, V. (1965). Biochem. J. 95, 262-269.

supplementary materials

Acta Cryst. (2009). E65, o1214 [doi:10.1107/81600536809016171]

2-Carboxy-1-phenylethanaminium perchlorate

X.-Z. Li, H. Li and Z.-R. Qu

Comment

 β -Amino acids are important molecules, due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparations of β -amino acids, as precursors for the synthesis of novel biologically active compounds (Arki *et al.*, 2004; Cohen *et al.*, 2002; Zeller *et al.*, 1965). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains one cation and one anion (Fig.1), in which the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. Intramolecular N-H···O interaction results in the formation of a six-membered ring B (O2/N1/C1-C3/H1B) having twisted conformation.

In the crystal structure, intermolecular O-H···O, N-H···O and C-H···O interactions (Table 1) link the molecules into a network (Fig. 2), in which they may be effective in the stabilization of the structure. There also exists a weak C—H··· π interaction (Table 1).

Experimental

Under nitrogen protection, benzaldehyde (3.18 g, 30 mmol), malonic acid (5.00 g, 48 mmol) and ammonium acetate (6.00 g, 78 mmol) were added into a flask and refluxed for 10 h to yield a colorless precipitate. The crude product was obtained after filtration, then it was dissolved in ethanol/ perchloric acid (1:1), after slowly evaporating over a period of 4 d, colorless prism crystals of the title compound suitable for X-ray analysis were isolated.

Refinement

H atoms were positioned geometrically with O-H = 0.82 Å (for OH), N-H = 0.89 Å (for NH₃), C-H = 0.93, 0.98 and 0.97 Å, for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O,N)$, where x = 1.5 for OH and NH₃ H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

2-Carboxy-1-phenylethanaminium perchlorate

Crystal	data
---------	------

$\mathrm{C_9H_{12}NO_2^+} \cdot \mathrm{Cl_1O_4^-}$	$F_{000} = 1104$
$M_r = 265.65$	$D_{\rm x} = 1.578 \ {\rm Mg \ m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 1979 reflections
a = 6.6583 (13) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 13.826 (3) Å	$\mu = 0.36 \text{ mm}^{-1}$
c = 24.300 (5) Å	T = 294 K
$V = 2237.0 (8) \text{ Å}^3$	Prism, colorless
Z = 8	$0.45\times0.35\times0.12~mm$

Data collection

Rigaku SCXmini diffractometer	2560 independent reflections
Radiation source: fine-focus sealed tube	1966 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
T = 294 K	$\theta_{\text{max}} = 27.5^{\circ}$
CCD_Profile_fitting scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (Blessing, 1995)	$h = -8 \rightarrow 8$
$T_{\min} = 0.863, T_{\max} = 0.957$	$k = -17 \rightarrow 17$
21012 measured reflections	$l = -31 \rightarrow 31$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.110$	$w = 1/[\sigma^2(F_0^2) + (0.0351P)^2 + 1.6729P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
2560 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
156 parameters	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.99041 (8)	0.97917 (4)	0.32015 (2)	0.03337 (17)
01	0.9660 (3)	0.30715 (14)	0.32107 (7)	0.0428 (5)
H1	1.0262	0.3182	0.2923	0.064*
O2	0.7570 (2)	0.22973 (13)	0.26501 (6)	0.0365 (4)
03	1.0688 (3)	1.07288 (12)	0.30762 (7)	0.0439 (5)
O4	0.9012 (3)	0.94103 (16)	0.27168 (8)	0.0630 (6)
05	1.1483 (3)	0.91952 (15)	0.33824 (10)	0.0649 (6)
O6	0.8413 (3)	0.98786 (15)	0.36203 (8)	0.0584 (6)
N1	0.4988 (3)	0.09957 (16)	0.31532 (7)	0.0349 (5)
H1A	0.5772	0.0550	0.3307	0.052*
H1B	0.5491	0.1165	0.2828	0.052*
H1C	0.3759	0.0756	0.3107	0.052*
C1	0.8076 (3)	0.25365 (17)	0.31064 (9)	0.0289 (5)
C2	0.6999 (3)	0.22487 (17)	0.36217 (9)	0.0306 (5)
H2A	0.6911	0.2806	0.3863	0.037*
H2B	0.7778	0.1756	0.3810	0.037*
C3	0.4889 (3)	0.18613 (17)	0.35177 (9)	0.0289 (5)
Н3	0.4139	0.2364	0.3321	0.035*
C4	0.3749 (3)	0.16333 (17)	0.40392 (9)	0.0310 (5)
C5	0.3897 (4)	0.0760 (2)	0.43014 (10)	0.0464 (7)
Н5	0.4766	0.0289	0.4167	0.056*
C6	0.2752 (5)	0.0576 (2)	0.47670 (12)	0.0565 (8)
H6	0.2840	-0.0023	0.4940	0.068*
C7	0.1499 (4)	0.1267 (2)	0.49722 (11)	0.0537 (8)
H7	0.0739	0.1143	0.5286	0.064*
C8	0.1367 (4)	0.2138 (2)	0.47155 (11)	0.0493 (7)
H8	0.0524	0.2613	0.4857	0.059*
C9	0.2472 (4)	0.2322 (2)	0.42480 (9)	0.0390 (6)
Н9	0.2352	0.2916	0.4072	0.047*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0277 (3)	0.0306 (3)	0.0418 (3)	-0.0002 (2)	0.0000 (2)	0.0054 (3)
O1	0.0336 (10)	0.0582 (12)	0.0365 (9)	-0.0188 (8)	0.0033 (8)	-0.0024 (9)
O2	0.0335 (9)	0.0489 (10)	0.0270 (8)	-0.0081 (8)	0.0018 (7)	-0.0040 (7)
O3	0.0422 (10)	0.0332 (10)	0.0564 (11)	-0.0080 (8)	-0.0014 (9)	0.0095 (8)
O4	0.0594 (13)	0.0684 (14)	0.0612 (13)	-0.0217 (11)	-0.0103 (11)	-0.0133 (11)
O5	0.0553 (13)	0.0554 (13)	0.0841 (15)	0.0219 (11)	-0.0044 (12)	0.0233 (11)
O6	0.0517 (12)	0.0644 (13)	0.0591 (12)	0.0037 (10)	0.0210 (10)	0.0119 (11)
N1	0.0307 (11)	0.0439 (12)	0.0300 (10)	-0.0085 (9)	0.0019 (9)	-0.0045 (9)
C1	0.0242 (11)	0.0291 (12)	0.0333 (12)	0.0002 (9)	0.0011 (9)	-0.0020 (10)
C2	0.0296 (12)	0.0359 (13)	0.0262 (11)	-0.0056 (10)	-0.0013 (9)	-0.0024 (10)
C3	0.0253 (11)	0.0355 (13)	0.0259 (11)	0.0009 (10)	0.0013 (9)	-0.0003 (9)
C4	0.0238 (11)	0.0435 (14)	0.0256 (11)	-0.0039 (10)	-0.0005 (9)	0.0008 (10)
C5	0.0485 (16)	0.0501 (16)	0.0406 (14)	0.0037 (13)	0.0071 (13)	0.0065 (13)
C6	0.066 (2)	0.0596 (19)	0.0435 (16)	-0.0121 (16)	0.0047 (15)	0.0180 (14)
C7	0.0425 (16)	0.085 (2)	0.0339 (14)	-0.0167 (16)	0.0088 (12)	0.0037 (15)
C8	0.0388 (15)	0.073 (2)	0.0363 (14)	0.0045 (14)	0.0094 (12)	-0.0057 (14)
C9	0.0323 (12)	0.0520 (16)	0.0326 (12)	0.0016 (11)	0.0003 (11)	0.0012 (12)

Geometric parameters (Å, °)

Cl1—O5	1.4067 (19)	C3—N1	1.490 (3)
Cl1—O4	1.421 (2)	C3—C4	1.510 (3)
Cl1—O6	1.4269 (19)	С3—Н3	0.9800
Cl1—O3	1.4297 (18)	C4—C5	1.369 (3)
O1—H1	0.8200	C4—C9	1.373 (3)
N1—H1A	0.8900	C5—C6	1.388 (4)
N1—H1B	0.8900	С5—Н5	0.9300
N1—H1C	0.8900	C6—C7	1.363 (4)
C1—O2	1.205 (3)	С6—Н6	0.9300
C1—O1	1.313 (3)	С7—С8	1.359 (4)
C1—C2	1.497 (3)	С7—Н7	0.9300
C2—C3	1.524 (3)	C8—C9	1.377 (3)
C2—H2A	0.9700	С8—Н8	0.9300
C2—H2B	0.9700	С9—Н9	0.9300
O5—Cl1—O4	110.73 (15)	N1—C3—C2	109.89 (18)
O5—Cl1—O6	110.28 (13)	C4—C3—C2	113.42 (18)
O4—Cl1—O6	109.36 (13)	N1—C3—H3	107.5
O5—Cl1—O3	108.97 (12)	С4—С3—Н3	107.5
O4—Cl1—O3	108.21 (12)	С2—С3—Н3	107.5
O6—Cl1—O3	109.25 (12)	C5—C4—C9	119.0 (2)
C1—O1—H1	109.5	C5—C4—C3	122.6 (2)
C3—N1—H1A	109.5	C9—C4—C3	118.5 (2)
C3—N1—H1B	109.5	C4—C5—C6	120.1 (3)
C3—N1—H1C	109.5	С4—С5—Н5	120.0

H1A—N1—H1B	109.5	С6—С5—Н5	120.0
H1A—N1—H1C	109.5	C7—C6—C5	120.4 (3)
H1B—N1—H1C	109.5	С7—С6—Н6	119.8
O2—C1—O1	123.8 (2)	С5—С6—Н6	119.8
O2—C1—C2	124.2 (2)	C8—C7—C6	119.5 (3)
O1—C1—C2	111.91 (19)	С8—С7—Н7	120.2
C1—C2—C3	113.35 (18)	С6—С7—Н7	120.2
C1—C2—H2A	108.9	С7—С8—С9	120.5 (3)
С3—С2—Н2А	108.9	С7—С8—Н8	119.7
C1—C2—H2B	108.9	С9—С8—Н8	119.7
С3—С2—Н2В	108.9	C4—C9—C8	120.5 (3)
H2A—C2—H2B	107.7	С4—С9—Н9	119.7
N1—C3—C4	110.68 (19)	С8—С9—Н9	119.7

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1B…O2	0.89	2.13	2.773 (3)	128
C9—H9···O5 ⁱ	0.93	2.56	3.409 (3)	152
C3—H3…O5 ⁱ	0.98	2.57	3.370 (3)	139
C3—H3···O2 ⁱⁱ	0.98	2.58	3.286 (3)	129
N1—H1C···O3 ⁱⁱⁱ	0.89	2.05	2.892 (3)	158
N1—H1B···O3 ^{iv}	0.89	2.28	3.046 (3)	144
N1—H1A····O6 ^v	0.89	2.13	2.979 (3)	159
O1—H1···O2 ^{vi}	0.82	2.41	3.046 (2)	135
O1—H1···O4 ^{vii}	0.82	2.35	3.048 (3)	143
C8—H8····Cg1 ^{viii}	0.93	2.79	3.688 (3)	162

Symmetry codes: (i) -*x*+3/2, *y*-1/2, *z*; (ii) *x*-1/2, *y*, -*z*+1/2; (iii) *x*-1, *y*-1, *z*; (iv) *x*-1/2, *y*-1, -*z*+1/2; (v) *x*, *y*-1, *z*; (vi) *x*+1/2, *y*, -*z*+1/2; (vii) -*x*+2, *y*-1/2, -*z*+1/2; (viii) -*x*-1, *y*+1/2, -*z*+1/2.

Fig. 1

Fig. 2